The Structural Basis of Erwinia rhapontici Isomaltulose Synthase
نویسندگان
چکیده
Sucrose isomerase NX-5 from Erwiniarhapontici efficiently catalyzes the isomerization of sucrose to isomaltulose (main product) and trehalulose (by-product). To investigate the molecular mechanism controlling sucrose isomer formation, we determined the crystal structures of native NX-5 and its mutant complexes E295Q/sucrose and D241A/glucose at 1.70 Å, 1.70 Å and 2.00 Å, respectively. The overall structure and active site architecture of NX-5 resemble those of other reported sucrose isomerases. Strikingly, the substrate binding mode of NX-5 is also similar to that of trehalulose synthase from Pseudomonasmesoacidophila MX-45 (MutB). Detailed structural analysis revealed the catalytic RXDRX motif and the adjacent 10-residue loop of NX-5 and isomaltulose synthase PalI from Klebsiella sp. LX3 adopt a distinct orientation from those of trehalulose synthases. Mutations of the loop region of NX-5 resulted in significant changes of the product ratio between isomaltulose and trehalulose. The molecular dynamics simulation data supported the product specificity of NX-5 towards isomaltulose and the role of the loop(330-339) in NX-5 catalysis. This work should prove useful for the engineering of sucrose isomerase for industrial carbohydrate biotransformations.
منابع مشابه
Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium Erwinia rhapontici.
Erwinia rhapontici is able to convert sucrose into isomaltulose (palatinose, 6-O-alpha-D-glucopyranosyl-D-fructose) and trehalulose (1-O-alpha-D-glucopyranosyl-D-fructose) by the activity of a sucrose isomerase. These sucrose isomers cannot be metabolized by plant cells and most other organisms and therefore are possibly advantageous for the pathogen. This view is supported by the observation t...
متن کاملCharacterization of the highly efficient sucrose isomerase from Pantoea dispersa UQ68J and cloning of the sucrose isomerase gene.
Sucrose isomerase (SI) genes from Pantoea dispersa UQ68J, Klebsiella planticola UQ14S, and Erwinia rhapontici WAC2928 were cloned and expressed in Escherichia coli. The predicted products of the UQ14S and WAC2928 genes were similar to known SIs. The UQ68J SI differed substantially, and it showed the highest isomaltulose-producing efficiency in E. coli cells. The purified recombinant WAC2928 SI ...
متن کاملImmobilization of Erwinia sp. D12 Cells in Alginate-Gelatin Matrix and Conversion of Sucrose into Isomaltulose Using Response Surface Methodology
Isomaltulose is a noncariogenic reducing disaccharide and also a structural isomer of sucrose and is used by the food industry as a sucrose replacement. It is obtained through enzymatic conversion of microbial sucrose isomerase. An Erwinia sp. D12 strain is capable of converting sucrose into isomaltulose. The experimental design technique was used to study the influence of immobilization parame...
متن کاملExpression, purification, crystallization and preliminary X-ray crystallographic studies of the trehalulose synthase MutB from Pseudomonas mesoacidophila MX-45.
The trehalulose synthase (MutB) from Pseudomonas mesoacidophila MX-45, belonging to glycoside hydrolase family 13, catalyses the isomerization of sucrose to trehalulose (alpha-D-glucosylpyranosyl-1,1-D-fructofuranose) and isomaltulose (alpha-D-glucosylpyranosyl-1,6-D-fructofuranose) as main products and glucose and fructose in residual amounts from the hydrolytic reaction. To date, a three-dime...
متن کاملCharacterization of type 1 and mannose-resistant fimbriae of Erwinia spp.
Type 1 fimbriae from Erwinia carotovora subsp. carotovora and mannose-resistant fimbriae from Erwinia rhapontici were purified and characterized. The type 1 fimbrillin had an apparent molecular weight of 16,500; that of the mannose-resistant fimbrillin was 18,000. The amino-terminal amino acid sequences of the two fimbrillins were related, but tryptic peptide maps showed significant differences...
متن کامل